DYNAMIC INVERSION AND POLAR DECOMPOSITION OF MATRICES - Decision and Control, 1995., Proceedings of the 34th IEEE Conference on

نویسنده

  • Neil H. Getz
چکیده

Usznq the recently zntroduced concept of a "dynamzc znverse" of a map, along wzth zts assoczated analog compvtatzonal pnradzgm. we construct contznuous-tame iionlzneor dynamzcal systems whzch produce both regulor and generalazed znverses of ttme-varyzng and $xed matrzccs, as well as polar decomposataons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical Methods for Polar Decomposition and Inversion of Matrices

We show how one may obtain polar decomposition as well as inversion of xed and time-varying matrices using a class of nonlinear continuous-time dynamical systems. First we construct a dynamic system that causes an initial approximation of the inverse of a time-varying matrix to ow exponentially toward the true time-varying inverse. Using a time-parameterized homotopy from the identity matrix to...

متن کامل

Parallel Singular Value Decomposition via the Polar Decomposition

A new method is described for computing the singular value decomposition (SVD). It begins by computing the polar decomposition and then computes the spectral decomposition of the Hermitian polar factor. The method is particularly attractive for shared memory parallel computers with a relatively small number of processors, because the polar decomposition can be computed efficiently on such machi...

متن کامل

Chapter 1 A New Parallel Algorithm for Computing the Singular Value Decomposition ∗ Nicholas

A new method is described for computing the singular value decomposition (SVD). It begins by computing the polar decomposition and then computes the spectral decomposition of the Hermitian polar factor. The method is particularly attractive for shared memory parallel computers with a relatively small number of processors, because the polar decomposition can be computed efficiently on such machi...

متن کامل

GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM

Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic  ...

متن کامل

J-Orthogonal Matrices: Properties and Generation

A real, square matrix Q is J-orthogonal if Q JQ = J , where the signature matrix J = diag(±1). J-orthogonal matrices arise in the analysis and numerical solution of various matrix problems involving indefinite inner products, including, in particular, the downdating of Cholesky factorizations. We present techniques and tools useful in the analysis, application and construction of these matrices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004